Telegram Group & Telegram Channel
🚀 Создавайте ML-модели с помощью естественного языка с Plexe

Почему бы не упростить создание моделей машинного обучения?

Plexe — это Python-библиотека, которая позволяет вам описывать задачу на естественном языке. После этого команда интеллектуальных агентов на базе LLM берёт всё в свои руки: от построения архитектуры до обучения и тестирования.

📌 Пример:
import plexe

model = plexe.Model(
intent="Предсказать тональность новостных статей",
input_schema={"headline": str, "content": str},
output_schema={"sentiment": str}
)

model.build(
datasets=[your_dataset],
provider="openai/gpt-4o-mini"
)

prediction = model.predict({
"headline": "Прорыв в области ИИ",
"content": "Учёные достигли впечатляющих результатов..."
})


Основные возможности:
— Описание модели на естественном языке
— Многоагентная система (анализ, генерация кода, тесты)
— Автоматизированное построение моделей в один метод
— Поддержка распределённого обучения (Ray)
— Генерация данных и автоматический вывод схем
— Интеграция с OpenAI, Anthropic, HuggingFace и другими LLM-провайдерами

📦 Установка:
pip install plexe


🔗 Ознакомиться с проектом и примерами: https://clc.to/Fs6A-g

Библиотека дата-сайентиста #буст



tg-me.com/dsproglib/6465
Create:
Last Update:

🚀 Создавайте ML-модели с помощью естественного языка с Plexe

Почему бы не упростить создание моделей машинного обучения?

Plexe — это Python-библиотека, которая позволяет вам описывать задачу на естественном языке. После этого команда интеллектуальных агентов на базе LLM берёт всё в свои руки: от построения архитектуры до обучения и тестирования.

📌 Пример:

import plexe

model = plexe.Model(
intent="Предсказать тональность новостных статей",
input_schema={"headline": str, "content": str},
output_schema={"sentiment": str}
)

model.build(
datasets=[your_dataset],
provider="openai/gpt-4o-mini"
)

prediction = model.predict({
"headline": "Прорыв в области ИИ",
"content": "Учёные достигли впечатляющих результатов..."
})


Основные возможности:
— Описание модели на естественном языке
— Многоагентная система (анализ, генерация кода, тесты)
— Автоматизированное построение моделей в один метод
— Поддержка распределённого обучения (Ray)
— Генерация данных и автоматический вывод схем
— Интеграция с OpenAI, Anthropic, HuggingFace и другими LLM-провайдерами

📦 Установка:
pip install plexe


🔗 Ознакомиться с проектом и примерами: https://clc.to/Fs6A-g

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6465

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Look for Channels Online

You guessed it – the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if you’re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, you’ll have to ask one of its members to invite you.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from de


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA